A strong generic ergodicity property of unitary and self-adjoint operators

نویسنده

  • A. S. KECHRIS
چکیده

Consider the conjugacy action of the unitary group of an infinite-dimensional separable Hilbert space on the unitary operators. A strong generic ergodicity property of this action is established, by showing that any conjugacy invariants assigned in a definable way to unitary operators, and taking as values countable structures up to isomorphism, generically trivialize. Similar results are proved for conjugacy of self-adjoint operators and for measure equivalence. The proofs make use of the theory of turbulence for continuous actions of Polish groups, developed by Hjorth. These methods are also used to give a new solution to a problem of Mauldin in measure theory, by showing that any analytic set of pairwise orthogonal measures on the Cantor space is orthogonal to a product measure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on $lambda$-Aluthge transforms of operators

Let $A=U|A|$ be the polar decomposition of an operator $A$ on a Hilbert space $mathscr{H}$ and $lambdain(0,1)$. The $lambda$-Aluthge transform of $A$ is defined by $tilde{A}_lambda:=|A|^lambda U|A|^{1-lambda}$. In this paper we show that emph{i}) when $mathscr{N}(|A|)=0$, $A$ is self-adjoint if and only if so is $tilde{A}_lambda$ for some $lambdaneq{1over2}$. Also $A$ is self adjoint if and onl...

متن کامل

Cyclicity in Rank-one Perturbation Problems

The property of cyclicity of a linear operator, or equivalently the property of simplicity of its spectrum, is an important spectral characteristic that appears in many problems of functional analysis and applications to mathematical physics. In this paper we study cyclicity in the context of rank-one perturbation problems for self-adjoint and unitary operators. We show that for a fixed non-zer...

متن کامل

A characterization of orthogonality preserving operators

‎In this paper‎, ‎we characterize the class of orthogonality preserving operators on an infinite-dimensional Hilbert space $H$ as scalar multiples of unitary operators between $H$ and some closed subspaces of $H$‎. ‎We show that any circle (centered at the origin) is the spectrum of an orthogonality preserving operator‎. ‎Also‎, ‎we prove that every compact normal operator is a strongly orthogo...

متن کامل

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

The Spectral Theorem for Self-Adjoint and Unitary Operators

(1.1) (Au, v) = (u, A∗v), u, v ∈ H. We say A is self-adjoint if A = A∗. We say U ∈ L(H) is unitary if U∗ = U−1. More generally, if H is another Hilbert space, we say Φ ∈ L(H,H) is unitary provided Φ is one-to-one and onto, and (Φu, Φv)H = (u, v)H , for all u, v ∈ H. If dim H = n < ∞, each self-adjoint A ∈ L(H) has the property that H has an orthonormal basis of eigenvectors of A. The same holds...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001